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a b s t r a c t 

The system-optimal dynamic traffic assignment (SO-DTA) problem aims at solving for the 

time-dependent link and path flow of a network that yields the minimal total system cost, 

provided with the Origin-Destination (O-D) demand. The key to solving the path-based for- 

mulation of SO-DTA is to efficiently compute the path marginal cost (PMC). Existing stud- 

ies implicitly assume that the total system cost (TC) is always differentiable with respect 

to the path flow when computing PMC. We show that the TC could be non-differentiable 

with respect to the link/path flow in some cases, especially when the flow is close or under 

the SO conditions. Overlooking this fact can lead to convergence failure or incorrect solu- 

tions while numerically solving the SO-DTA problem. In this paper we demonstrate when 

the TC would be indifferentiable and how to compute the subgradients, namely the lower 

and upper limit of path marginal costs. We examine the relations between the disconti- 

nuity of PMC and the SO conditions, develop PMC-based necessary conditions for SO so- 

lutions, and finally design heuristic solution algorithms for solving SO in general networks 

with multi-origin-multi-destination OD demands. Those algorithms are tested and com- 

pared to existing algorithms in four numerical experiments, two toy networks where we 

compare analytical solutions with numerical solutions, one small network and one sizable 

real-world network. We show that the proposed heuristic algorithms outperform existing 

ones, in terms of both the total TC, convergence, and the resultant path/link flow. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

The system-optimal dynamic traffic assignment (SO-DTA) problem aims at solving the time-dependent traffic flows of a

network that yield minimal total system cost provided with the Origin-Destination (O-D) demand. The solution provides a

benchmark to traffic management applications such as emergency evacuations, construction detour and information provi-

sion hence it has attracted significant attentions for decades. Some studies have proposed algorithms for solving the path-

based SO-DTA problem that relies on the computation of path marginal cost (PMC). In those studies total system cost (TC) is

assumed to be differentiable with respect to the path flow. In this paper we show that the TC is generally not differentiable

under system optimum, and propose subgradient based algorithms that achieve better performance in terms of both flow

solutions and computational efficiency. 

Early work on SO-DTA problems ( Vickrey, 1969; Arnott et al., 1990 ) focused on solving the problem analytically on ide-

alized networks. Merchant and Nemhauser (1978a,b) are among the first studies solving SO-DTA on general networks. They
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formulated the SO-DTA problem using a link-based approach in which the base variables are link flows over time. Later

studies that using similar approaches under different network settings includes ( Carey, 1987; Carey and Subrahmanian,

20 0 0; Friesz et al., 1989; Wie et al., 1994; Ziliaskopoulos, 20 0 0 ). Intuitively, the SO-DTA problem can be solved directly

through mathematical programming with constraints of flow dynamics. However, as pointed out by Shen et al. (2007a) and

Qian et al. (2012) , the main challenge of the optimization formulation (typically link-based) is the non-convexity and non-

smoothness of the constraint set. Relaxations on the constraints were introduced ( Carey, 1987; Ziliaskopoulos, 20 0 0 ) to deal

with this issue, Merchant and Nemhauser (1978a,b) formulated the problem as a non-convex programming problem us-

ing the exit flow functions for link model. By replacing non-linear equality constraints with linear inequality constraints,

Ziliaskopoulos (20 0 0) and Zhu and Ukkusuri (2013) used the kinematic wave model and formulated the SO-DTA problem

as a linear programming problem. However this will lead to the “vehicle holding” issue meaning that vehicles will not

enter its next link but wait even if the next link has capacity. This is unrealistic in practice. Long and Szeto (2019) ad-

dressed this issue by introducing the big M method and cast the original problem into a mixed integer linear programming

(MILP) problem. However MILP itself is proved to be NP-hard and it can be mathematically intractable when the dimension

of decision variables becomes large in large-scale networks. Another potential issue of the link based formulation is that

the first-in-first-out (FIFO) principle can not be guaranteed hence extra constraints are required. This will introduce extra

non-convex constraints when multiple Destinations exist ( Carey, 1992 ). These two issues bring challenges on finding the

true SO solutions. Recently, Long et al. (2018) proposed a new intersection-movement-based formulation and incorporated

non-vehicle-holding and FIFO constraints. In this formulation, the base variables are the time-dependent flow between two

links and it was shown using this formulation, an approximate SO solution without vehicle holding and FIFO violation is

achieved. However,the formulation itself is a mixed integer non-linear programming. It can be mathematically intractable

for large-scale networks. A agent based approach for finding the dynamic traffic assignment such that vehicular emission

can be minimized was proposed in Lu et al. (2016) which can also be used to solve the SO-DTA problem. While like other

optimization-based models, the solution to this approach will have the “vehicle holding” issue and hence gives a lower

bound of the SO-DTA problem. 

Another possible approach to formulate the SO-DTA problem is to use the path-based representation of flows initially

adopted by Ghali and Smith (1995) , Peeta and Mahmassani (1995) and Lo (1999) . Using the path-based formulation, all

constraints will be linear, thus the constraint set will be a polyhedral. However, the path cost in the objective function

(namely TC) in path-based formulation is highly non-linear and thus challenging to compute. Path-based SO-DTA would

need to ensure PMC is equalized for network flow across all paths and time. PMC measures the change in TC with respect

to a small unit change in the flow on a specific path departing at a specific time, namely the derivative of TC over path flow.

Under the PMC-based method, the difficulties of enforcing realistic traffic flow dynamics and dealing with large-scale de-

cision variables are transformed to the network simulation and heuristic searching of path flows (both path generation and

gradient descent directions). The burden of analytical flow dynamics on the optimization models is now on those heuristics.

These are two different approaches to address the SO-DTA problem. We fully acknowledge that this PMC-based approach

does not utilize sufficient conditions of optimization models nor does it necessarily yield true SO solutions. However, by for-

mulating the SO-DTA problem in terms of path flow and PMC, we are able to solve the problem through a simulation-based

heuristics algorithm for large-scale networks, in a tractable manner. 

Assuming the TC is differentiable and PMC can be approximated, Shen et al. (2007a) and Qian et al. (2012) showed that

the path-based formulation can be cast into a variational inequalities (VI) problem. Hence, algorithms for VI can be used

to solve the path-based SO-DTA problem. Therefore, the evaluation of PMC is critical in solving the path-based SO-DTA

problem. 

We note that beyond solving the SO-DTA problem, evaluating PMC approximately and efficiently is very useful in other

network modeling/management applications, such as providing marginal cost based toll, network reliability analysis, and 

dynamic O-D estimation ( Qian and Zhang, 2011 ), just to name a few. The PMC has strong policy implications to measure

the negative social externalities. It also measures how sensitive the network performance or a particular group of travelers

could be impacted by a marginal traveler, both temporally and spatially. In cases where a mathematical or policy problem

needs to evaluate the (sub)gradient of a function with respect to path/link flow, this paper would also provide insights and

knowledge. 

Without closed forms, the path cost of network flow is usually evaluated through a Dynamical Network Loading (DNL)

process which could be time-consuming. It is oftentimes computational heavy to evaluate PMC by doing DNL repeatedly

with small flow perturbations for each time-dependent path. It is computationally infeasible for sizable networks. There are

proposed approaches to improve the efficiency of network impact of marginal demand/supply changes without repeating

DNL simulations ( Corthout et al., 2014 ). However, the number of DNL needed for the path-based SO-DTA is still substantial,

namely a small fraction of the number of potential paths times the number of assignment intervals for each iteration. More

importantly, because PMC can be non-smooth with respect to the flow, doing so with a small flow perturbation could

sometimes lead to tremendous error in PMC. Ghali and Smith (1995) and Peeta and Mahmassani (1995) evaluated PMC

by summing up link marginal costs along the path according to the time-dependent link traversal times. They made the

assumption that PMCs are additive which was proven to over-estimate them in dynamic network by Shen et al. (2007b) .

Shen et al. (2007b) and Qian et al. (2012) showed that the flow perturbation cannot achieve the downstream link until

the queue on current link dissipates. A different approximation method with traffic flow modeled by point queue without

diverges was proposed in Shen et al. (2007b) . Qian et al. (2012) and Qian and Zhang (2011) extended this PMC approximation
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method to general networks with spillbacks and general junctions. They showed that using the PMC approximation methods,

the TC with respect to the SO solutions can decline effectively and converge in sizable networks. 

All existing methods ( Ghali and Smith, 1995; Peeta and Mahmassani, 1995; Shen et al., 2007b; Qian et al., 2012; Qian

and Zhang, 2011 ) evaluate the PMC by implicitly applying a positive flow perturbation, with the implicit assumption that the

TC is always differentiable. As will be shown in this paper later, this is not always true, especially when the flow reaches

system optimum. In this study we propose a method to evaluate the subderivative-based PMC (namely the sub-gradient

of TC) and show that the subderivative-based PMC is related to the first order necessary condition of system optimum.

Several heuristics that deal with non-differential TC to solve for flow patterns are proposed. Numerical experiments show

that the sub-gradient approach can solve the SO-DTA problem resulting solutions close to the analytical SO solutions in the

demonstration networks. For a sizable network, we show the subgradient based approach is more efficient and the resultant

flow solution does not oscillate over time as exhibited in the case where PMC is assumed to be continuous. 

The rest of this paper is organized as follows: Section 2 presents the notations used in this paper and the formulation of

the path-based SO-DTA problem. In Section 3 , we show when the TC is not differentiable and how to evaluate PMC in these

cases. The SO-DTA problem is then formulated in terms of VI with subgradients of TC in Section 4 . The SO solutions of two

demonstration networks will be solved analytically in Section 5 . In Section 6 , we propose several SO-DTA algorithms that

using heuristics. Two numerical experiments are reported in Section 7 to compare the performance of proposed algorithms

with existing algorithms. Section 7 concludes this paper. 

2. Notations and formulations 

The SO-DTA problem can be formulate in either continuous time or discrete time intervals. Ma et al. (2014, 2017) use the

continuous-time setting and formulate the SO-DTA problem as optimal control problems. However, solving continuous-time

models in large-scale networks could be challenging and hence numerical solution algorithms are usually developed based

on discretized time intervals. Ma et al. (2014, 2017) . Another approach is to directly formulate the SO-DTA in discrete time

intervals in the first place (e.g. Ziliaskopoulos, 20 0 0; Shen et al., 2007a; Qian et al., 2012; Long et al., 2018 ). In this paper

we will take the latter formulation. 

Suppose a general roadway network consists of a set of nodes, N , and a set of links, A . Let a denote the link index, a ∈ A .

Let R and S denote the set of origin nodes and destination nodes, respectively. r − s represents an O-D pair, where r ∈ R

and s ∈ S . Define T d as the assignment horizon, T d = { 1 , 2 , . . . , T } . Time is drawn from a discrete set t ∈ T d . K 
rs 
t and q rs t is the

set of paths and O-D demand for an O-D pair r − s departing at time t , respectively. Q 
rs denotes the total O-D demand for

an O-D pair r − s . The travel cost of commuters departing at time t on path p of O-D pair rs , c rs p (t) , consists of actual travel

time, w 
rs 
p (t) , and schedule delay cost, 

c rs p (t) = 

⎧ ⎨ 

⎩ 

αw 
rs 
p (t) + β[ t ∗rs − �rs − t − w 

rs 
p (t)] t ∗rs − �rs > t + w 

rs 
p (t) 

αw 
rs 
p ( t) t ∗rs − �rs ≤ t + w 

rs 
p (t) ≤ t ∗rs + �rs 

αw 
rs 
p (t) + γ [ t + w 

rs 
p (t) − t ∗rs − �rs ] t + w 

rs 
p (t) > t ∗rs + �rs 

(1)

where [ t ∗rs − �rs , t 
∗
rs + �rs ] is the targeted arrival time window for commuters of O-D pair rs. α, β and γ are the weighting

scalars of travel time, early arrival and late arrival, respectively. Let f rs pt denote the path flow on path p of O-D pair rs

departing at time t and f = { f rs pt } r,s,p,t be the path flow vector (pattern) consisting of path flows across all O-D pairs and

departure times. Note that in cases without departure time choice we can simply remove the second term on the right side

of Eq. (1) . In the reminder of this paper, we use c rs pt instead of c 
rs 
p (t) for clarity. But they are equivalent, both of which are

based on discrete time intervals. 

A path-based SO-DTA problem optimizing the total travel cost (TC) reads: 

Model M1 (with both routes choices and departure time choices): 

min TC (f ) = 

∑ 

rs ∈ RS 

∑ 

t∈ T d 

∑ 

p∈ K rs t 

f rs pt c 
rs 
pt (f ) (2a)

s.t. 
∑ 

t∈ T d 

∑ 

p∈ K rs t 

f rs pt = Q 
rs , ∀ rs (2b)

f rs pt ≥ 0 , ∀ rs, ∀ p, ∀ t (2c)

Model M2 (with route choices only): 

min TC (f ) = 

∑ 

rs ∈ RS 

∑ 

t∈ T d 

∑ 

p∈ K rs t 

f rs pt c 
rs 
pt (f ) (3a)

s.t. 
∑ 

p∈ K rs t 

f rs pt = q rs t , ∀ drs, t (3b)

f rs pt ≥ 0 , ∀ rs, ∀ p, ∀ t (3c)
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Path marginal cost (PMC) is precisely the change in the total cost (TC) with respect to one marginal unit change in path

flow departing at time t on path p of O-D pair rs . When TC is non-differentiable, the absolute change in TC can be different

if one reduces or increases one marginal unit of path flow f rs pt . In general, PMC, in a sub-gradient form, can be represented

by a closed interval defined by an upper bound and a lower bound of PMC as follows, 

PMC rs pt (f ) ∈ [ PMC rs pt (f ) 
−, PMC rs pt (f ) 

+ ] (4a) 

PMC rs pt (f ) 
+ = lim 

x ↓ f rs pt 

T C( ̃ f ) − T C(f ) 

x − f rs pt 

(4b) 

PMC rs pt (f ) 
− = lim 

x ↑ f rs pt 

T C( ̃ f ) − T C(f ) 

x − f rs pt 

(4c) 

˜ f denotes the new path flow pattern which reproduces the path flow vector f except that the element f rs pt of the vector f

is replaced by x . 

Note that for a general function, its right derivative is not necessarily less than its left derivative. However, in the case of

PMC, it always holds and hence yielding Eq. (4a) . This will be shown in Section 3 . 

Shen et al. (2007b) , Nie and Zhang (2010) and Qian et al. (2012) have formulated the path-based SO-DTA problem (2) in

a VI problem, i.e. find f ∗ ∈ � defined by Eqs. (2b) , (2c) such that, ∑ 

rs ∈ RS 

∑ 

t∈ T d 

∑ 

p∈ K rs t 

PMC rs pt (f 
∗)( f rs pt − f rs ∗pt ) ≥ 0 , ∀ f ∈ � (5) 

Eq. (5) is derived to ensure that PMC is equalized among all time-dependent paths for each O-D pair whenever there is

positive flow on a path. Its proof relies on the assumption that TC is differentiable everywhere and any PMC is single-valued.

Thus, Eq. (5) does not hold in general. In next section we will revisit this problem, and a general form of the VI formulation

will be presented. 

This paper will later work with a Mesoscopic dynamic network loading (DNL) process that computes the path cost c
and TC. However, the method of PMC subgradient approximation can be generally applied to any analytical or simulation

process that results in link based cumulative flow curves, where link cost, path cost and TC can be extracted and computed.

Link based cumulative flow curves record the number of vehicles arriving and departing each link by each loading interval

(typically a few seconds in the DNL), denoting as A (t) and D (t) . When the First-In-First-Out (FIFO) was met (or assumed),

we can retrieve the time-varying traversal time τ ( t ) of each link by, 

τ (t) = arg min 
k 

(A (t) − D (k )) − t (6) 

Traffic dynamics in DNL, including models that encapsulate flow propagations across nodes and links, are crucial to DNL

models. The implementation of DNL is based on the polymorphic dynamic network loading model in Nie (2006) . It is a

generic DNL model that can accommodate most commonly-used link models and node models. The FIFO principle on links

is automatically maintained in the implementation. In this paper we adopt the classic LWR model with Cell Transmission

Model (CTM) representation ( Daganzo, 1994; 1995 ) as the link model in general, but will start presenting the PMC con-

cepts with the point queue model. The DNL model is also generic with any node models such as the ones proposed in

Jin and Zhang (2004) , Ni and Leonard II (2005) and Tampère et al. (2011) . We will use a general node model proposed in

Nie (2006) and Nie and Zhang (2010) . As shown later, the process of evaluating link marginal cost is completely based on

the cumulative arrival/departure curves (also called inflow/outflow curves) of flow for each link. The only requirement here

is FIFO on the link, so that the time-dependent travel time can be uniquely determined. 

For a general junction connecting with n links, denote the number of vehicles from link i to link j within time interval t

as v ij ( t ). The demand (denoted as D i ( t )) and supply (denoted as S i ( t )) of a link at time t is defined as the maximum number

of vehicles that are able to leave and enter this link. When the proportion of vehicles heading from link i to link j, a ij 
is known for every link pairs, demand and supply can be computed based on the fundamental diagrams. Then v ij reads

( Nie and Zhang, 2010 ), 

virtual demand d̄ i (t) = min (D i (t ) , min 
j 

{ S j (t ) 
a i j (t ) 

} ) (7) 

virtual supply s̄ i (t) = min (S i (t ) , 
∑ 

j 

a ji (t ) D j (t )) (8) 

v i j (t) = min ( d̄ i (t ) a i j (t ) , ̄s i (t ) 
d̄ i (t ) a i j (t ) ∑ 

k d̄ k (t ) a k j (t ) 
) (9)

3. Approximating sub-gradient based path marginal cost 

This section demonstrates TC can be indifferentiable using two simple examples, followed by a general approach for

general networks. To demonstrate the concepts more clearly, we do not discuss the derivatives of the schedule delay in this

subsection, since it can be computed in a similar fashion as for the travel time ( Qian et al., 2012 ). 
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Fig. 1. The case of a single bottleneck. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. A single bottleneck 

First consider a small network with two links as in Fig. 1 a. The flow comes from the left link and goes through the right

link. The capacity of the first/left link is much larger than the right/second link and the first link has infinite length which

means no queue spillback will generate from this link to its upstream links. The free flow travel time of the second link is

τ and the capacity is c . We want to compute the path marginal cost of the second link. 

The free flow travel time is τ and the capacity of the bottleneck is c . When the bottleneck is not congested, the PMC of

any flow is always equal to τ . If a flow departing at time t hits the bottleneck when there is a queue Fig. 1 b (namely after

t 2 ), neither positive and negative flow perturbation at time t will shift the departure curve until the queue dissipates. In

these two cases the TC is differentiable. 

TC is not differentiable when the inflow rate equals exactly to the capacity flow rate. Consider a time-dependent flow as

shown in Fig. 1 b. Before t 1 the inflow rate is smaller than c and the PMC is τ . The inflow rate equals capacity c between t 1
and t 2 and exceeds the capacity after t 2 and a queue forms at the bottleneck. From some time after t 2 the inflow rate starts

to decrease. When the inflow rate becomes smaller than the bottleneck rate, the queue starts to dissipate. Finally the queue

vanishes at t 3 . One can verify that the PMC due to a flow perturbation at t ∈ [ t 2 , t 3 ] reads 

PMC t (f ) = τ + t 3 − t (10)

which is the same as the result from Shen et al. (2007b) . 

The interesting part is between t ∈ [ t 1 , t 2 ]. The PMC + t here is the same as Eq. (10) . However if one marginal unit of

vehicle was taken out of the link at time t ∈ [ t 1 , t 2 ], then the cumulative inflow curve after t will shift down for one

unit until the queue vanishes and so will the cumulative outflow curve. The area change due to the shift of the two

curves will cancel out each other and the PMC −t will be τ , different from PMC + t . Hence in this interval the TC is not

differentiable. 

PMC can be summarized as shown in Fig. 1 c or as follows, 

PMC t (f ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

τ t < t 1 
[ τ, t 3 + τ − t ] t ∈ [ t 1 , t 2 ) 
t 3 + τ − t t ∈ [ t 2 , t 3 ) 

(11)
τ t ≥ t 3 
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3.2. Tandem bottlenecks 

Now consider a toy network with two tandem bottlenecks as shown in Fig. 2 a. The link A has infinite length, but con-

strained by its outflow rate on Link O, namely the capacity c 1 and free flow travel time τ 1 . The downstream link B has also

sufficient holding capacity, with an outflow capacity c 2 by Link O’. The free flow travel time on link O’ is τ 2 . Note that the

inflow rate of link B is constrained by the capacity on link O. If c 1 ≤ c 2 then queue will never form on link B. The PMC will

be simply the one we computed in single bottleneck case plus τ 2 . Here we focus on the cases of c 1 > c 2 . 

First we consider the case without spillback (namely under the point queue model). We assume that link B is long

enough or the inflow rate is not so large that the queue on link B will never spillback to link O and link A. When the

network is in free flow state or has queues the TC will be differentiable and the computation of PMC is the same as in

Shen et al. (2007b) . The case where the inflow rates of both link equals to their respective capacities should be examined. 

Suppose a demand pattern as shown in Fig. 2 b. The inflow rate q A t of link A is: Before t A 
1 
and after t A 

4 
the inflow rate q A t 

is smaller than c 2 . Between t A 
1 
and t A 

2 
we have q A t = c 2 . q 

A 
t equals to c 1 when t ∈ [ t A 

2 
, t A 

3 
) . The inflow rate exceeds c 1 after t 

A
3 

and a queue will form on A which vanishes at t A 4 . After t 
A 
4 we have q A t < c 2 . Given the inflow pattern, the outflow rate of

link A will be c 2 between t A 1 + τ1 and t 
A 
2 + τ1 , and c 1 between t A 2 + τ1 and t 

A 
4 + τ1 . The inflow curve of link B is constrained

by the outflow curve of link A. Hence the cumulative curves for link B is: Between t B 
1 

= t A 
1 

+ τ1 and t 
B 
2 

= t A 
2 

+ τ1 the inflow
rate of link B q B t = c 2 . After t 

B 
2 
, a queue will form on link B which vanishes at time t B 

5 
, some time after t A 

4 
+ τ1 . Fig. 2 b and

d show the cumulative curves of link A and link B respectively. 

The link marginal cost of link A, LMC A t (defined as the change of the total cost of a link with respect to a unit flow

change in the path flow), is the same as the single bottleneck case: 

LMC A t (f ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

τ1 t < t A 2 

[ τ1 , τ1 + t A 4 − t ] t ∈ [ t A 2 , t 
A 
3 ) 

τ1 + t A 4 − t t ∈ [ t A 3 , t 
A 
4 ) 

τ1 t ≥ t A 4 

(12) 

Now consider link B. First examine the upper limit of LMC. If an additional vehicle enters link A at t < t A 
1 

or t > t A 
4 
, it

will experience no queue on both links thus LMC B t (f ) = τ2 . If the vehicle enters link A between t A 
2 
and t A 

4 
, the perturbation

will not arrive link B until t B 4 = t A 4 + τ1 when the queue on link A vanishes thus LMC B t (f ) 
+ = t B 5 + τ2 − t B 4 . If the perturbation

enters link A between t A 
1 
and t A 

2 
, since q A t is smaller than c 1 the perturbation can travel to link B immediately at t + τ1 . Then

we have LMC B t (f ) 
+ = t B 

5 
+ τ2 − t − τ1 . 

The lower limit of the LMC of link B is the same as the upper LMC when t < t A 1 or t > t A 3 . If the flow reduces by one unit

between t A 
2 
and t A 

3 
, then on link B, the flow reduces by one unit right at t + τ1 between t B 

2 
and t B 

3 
. But the departure curve

of link B will not shift due to the queue on link B thus LMC B t (f ) 
− = t B 5 + τ2 − t − τ1 . If the flow reduces by one unit on link

A between t A 
1 
and t A 

2 
, then at time t + τ1 , both the inflow and outflow curves of link B will shift down for one unit, which

leads to LMC B t (f ) 
− = τ2 . Hence the LMC of link B, 

LMC B t (f ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

τ2 t < t A 1 

[ τ2 , τ2 + t B 5 − t − τ1 ] t ∈ [ t A 1 , t 
A 
2 ) 

[ τ2 + t B 5 − t − τ1 , τ2 + t B 5 − t A 4 − τ1 ] t ∈ [ t A 2 , t 
A 
3 ) 

τ2 + t B 5 − t A 4 − τ1 t ∈ [ t A 3 , t 
A 
4 ) 

τ2 + t B 5 − t − τ1 t ∈ [ t A 4 , t 
A 
5 ) 

τ2 t ≥ t A 5 = t B 5 − τ1 

(13) 

Note that in the interval [ t A 
2 
, t A 

3 
) , the lower LMC limit of link B is actually greater than upper LMC limit (see Fig. 2 e),

with respect to the entering time to link A. Adding up the Eqs. (12) , (13) gives the PMC, 

PMC t (f ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

τ1 + τ2 t < t A 1 

[ τ1 + τ2 , t 
B 
5 + τ2 − t ] t ∈ [ t A 1 , t 

A 
2 ) 

t B 5 + τ2 − t t ∈ [ t A 2 , t 
A 
5 ) 

τ1 + τ2 t ≥ t A 5 

(14) 

The total PMC is shown in Fig. 2 f and the link marginal costs (LMCs) of the two links are shown in Fig. 2 c and e. It

is interesting to find that though the TC of each link are not differentiable when t ∈ [ t A 2 , t 
A 
3 ) , the added TC of both links

is differentiable. Com paring with the results of a single bottleneck Eq. (14) , one can find that the case of two tandem

bottlenecks is equivalent to the case of a single bottleneck with the capacity c 2 and free flow travel time τ1 + τ2 , regard-
less of the first link. This implies that the PMC of a network is determined by the most downstream active bottleneck. In

Shen et al. (2007b) and Qian et al. (2012) a similar finding is reported when TC is differentiable. 

Now consider the case under LWR model with spillover, under which a queue on link B can spillback to link A. Assume

the same demand pattern as for the point queue case applies. The cumulative inflow curves remain the same for link A,
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Fig. 2. Two tandem bottlenecks. 
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Fig. 3. A general junction (figure from Qian et al., 2012 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

except for that a queue forms upstream of link A. Suppose at some time t + τ1 ∈ [ t A 
2 

+ τ1 , t 
A 
5 

+ τ1 ] that a queue on link B
has occupied its physical space, and spill back to link A. Because of the spillback, the outflow rate of link A will drop from

c 1 down to c 2 after t + τ1 , so will the inflow rate of link B. One can find that the queue spillover is essentially seen as the

interaction between link A and link B, which does not change the flow PMC of the two links combined. The PMC over time

resembles Fig. 2 f, solely controlled by the most downstream bottleneck. 

3.3. Computation of PMC in general case 

We show that TC is not differentiable when the following two conditions are met for a path flow, 

1. A downstream bottleneck is active on this path for this path flow, namely the discharging flow rate of this bottleneck is

precisely its maximum flow rate; 

2. The path travel time equals to its free-flow travel time. 

If at least one of the two conditions does not hold, the PMC approximation methods in existing studies are still valid.

Otherwise, the PMC will be subderivative-based. Let t e 
in 

be the time when the flow perturbation enters link e . t e out, + is the
time when the flow perturbation leaves the current link e if we consider the flow perturbation to be positive. t e out, − is the

time when the flow perturbation leaves the current link e when we consider the flow perturbation to be negative. When

link e has an active bottleneck (namely the discharging flow rate of this bottleneck is precisely its maximum flow rate), then

t e out, + is the time when the bottleneck becomes inactive thereafter, since the departure flow from the link e will not see the

perturbation till the discharging rate drops below the capacity flow. This is true for t e out, − with an additional condition: at

time t e 
in 

on link e , there exists a queue. If no queue exists (namely the link travel time equals to the free flow travel time),

then t e out, − is simply the departure time of flow arriving at link e at time t e 
in 

, not the time when the perturbation is observed.

This can occur when the bottleneck is active and no queue exists, mostly likely under the system optimum. 

For a path p = { e 1 , e 2 , . . . , e n } without merge or diverge junctions, the PMC reads, 

PMC rs pt (f ) 
+ = 

∑ 

i 

(t e i out, + − t e i 
in, + ) + 

∑ 

i 

fft e i (15) 

PMC rs pt (f ) 
− = 

∑ 

i 

(t e i out, − − t e i 
in, −) + 

∑ 

i 

fft e i (16) 

where fft e is the free flow travel time on link e . Note that t e 
in, + , t 

e 
in, −, t e out, + and t 

e 
out, − should be identified from the cumulative

curves by tracing each link sequentially along the path. Namely t 
e i +1 

in, + = t 
e i 
out, + , t 

e i +1 

in, − = t 
e i 
out, −. If the TC is not differentiable,

t 
e i 
in, + 	 = t 

e i 
in, −. 

For a general network with merge/diverge junctions, the results from Qian et al. (2012) with minor modification are

sufficient. First consider a general junction under the point queue model with L incoming links { b 1 , b 2 , . . . , b l } and J outgoing
links { e 1 , e 2 , . . . , e j } as shown in Fig. 3 . The path that we are tracing goes through link b 1 and e 1 . The flow perturbation on

link b 1 and e 1 will never affect the flows on links b 2 , b 3 , . . . , b l . In other words the link marginal cost of links b 2 , b 3 , . . . , b l 
w.r.t. the flow perturbation on the path passing b 1 and e 1 are 0. 

If at time t link b 1 does not have an active bottleneck, then we can simply set the departure time from b 1 is the entering

time of the flow perturbation on link e 1 . If b 1 has an active bottleneck, we need to determine if vehicles on link b 1 head for

links e 2 , e 3 , . . . , e j are delayed by the flow perturbation. If the flow heading from b 1 for e 1 is the greatest of all flows from

b 1 to any e i , then the LMC on e 2 , e 3 , . . . , e j is assumed to remain the same. If this flow is not the greatest, without loss of

generality, assume the flow from b 1 to e m is the greatest. The LMC on all other downstream links except e m is assumed to

remain the same. Then the link marginal cost for the two links is, 

LMC b 1 ,t = (t b 1 out − t b 1 
in 

) + fft b 1 (17) 

LMC e m ,t + LMC e 1 ,t = (t e 1 out − t e 1 
in 

) + fft e 1 + 

1 

c b 
N 

′ 
b 1 ,e m 

(18) 

1 



P. Zhang and S. Qian / Transportation Research Part B 134 (2020) 41–63 49 

 

 

 

 

 

 

 

t  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where N 
′ 
b 1 ,e m 

is the number of vehicles arriving on link e m from b 1 between t e m 
in 

and t 
e 1 
out that do not encounter any down-

stream congested links. 

Qian et al. (2012) shows that under the LWR model for this general junction, the approximation of PMC is actually easier.

Two cases can occur: (1) link b 1 is an active bottleneck and all outgoing links are not; (2) one of the outgoing links is an

active bottleneck which lead to the queue spillover to all incoming links including link b 1 . In both cases, Eq. (17) remains

the same, and LMC of all outgoing links is zero except for link e 1 , 

LMC e 1 ,t = (t e 1 out − t e 1 
in 

) + fft e 1 (19)

Note that when the TC is not differentiable, there could exist the upper and lower limits of the LMC. We would need to

substitute t l out ( t 
l 
in 
) in Eq. (17) to (19) with t l out, + (t 

l 
in, + ) or t 

l 
out, − ( t l 

in, −), where l is a link on the path. t e 
in, + , t 

e 
in, −, t l out, + and

 
l 
out, − should be identified from the cumulative curves by tracing each link sequentially along the path. When doing this

sequentially, t l 
in, + and t 

l 
in, − become different in the first place when (under the LWR model), 

1. The discharging flow rate of this link l equals to its maximum capacity flow rate; or this link l has a queue spillover from

one of its downstream links (but the discharging flow rate can be less than its maximum capacity flow rate); 

2. The link travel time equals to its free-flow travel time. 

When t l 
in, + 	 = t l 

in, − starting from link l , all flow perturbation times of any downstream links of link l with sequential

tracing may be different, and the difference is likely to propagate over links. 

4. First order conditions of SO and the VI formulation 

At the system optimum (SO), the total travel cost cannot be further reduced by changing any traveler(s)’ departure time

or routes. We have the following proposition for a necessity condition of SO: 

Proposition 1. A necessary condition of SO: If f is an path flow SO solution, then for any O-D pair r − s, any path p, p ′ and
any departure time t, t ′ : 

f rs pt > 0 ⇒ 

{
min p ′ ,t ′ PMC rs p ′ t ′ (f ) 

+ ≥ PMC rs pt (f ) 
− (with departure time choices) 

min p ′ PMC rs p ′ t (f ) 
+ ≥ PMC rs pt (f ) 

− (without departure time choices) 
(20)

Proof. (Only for the M1 model with departure time choices) Suppose there exists an O-D pair r − s, two paths p 	 = p ′ and
departure time t 	 = t ′ such that f rs pt > 0 and PMC rs p ′ t ′ (f ) 

+ < PMC rs pt (f ) 
−. Then we can always find a small 0 < δ < f rs pt so that

we can construct a new path flow pattern ˜ f which resembles f except that the element f rs pt is replaced by f 
rs 
pt − δ and the

element f rs 
p ′ t ′ is replaced by f 

rs 
p ′ t ′ + δ. The new flow pattern ˜ f is still feasible since f rs pt − δ > 0 and ˜ f ∈ �. However, 

T C( ̃ f ) − T C(f ) = δ( PMC rs p ′ t ′ (f ) 
+ − PMC rs pt (f ) 

−) < 0 

implying that moving δ amount of travelers from path p and departure time t to p ′ and t ′ can reduce the TC, which contra-

dicts with the SO (namely TC is minimized). �

Proposition 1 can be explained as the first order condition of the SO-DTA problem. The Lagrangian of the M1 model is

as follows: 

L (f , μ, v ) = T C(f ) + 

∑ 

rs ∈ RS 
μrs (Q 

rs −
∑ 

t∈ T d 

∑ 

p∈ K rs t 

f rs pt ) −
∑ 

rs ∈ RS 

∑ 

t∈ T d 

∑ 

p∈ K rs t 

v rs pt f rs pt (21)

and the Karush-Kuhn-Tucker (KKT) conditions, 

0 ∈ 

∂T C(f ) 

∂ f rs pt 

− μrs − v rs pt , ∀ rs ∈ RS, p ∈ K rs t , t ∈ T d (22)

v rs pt f rs pt = 0 , ∀ rs ∈ RS, p ∈ K rs t , t ∈ T d (23)

Q 
rs −

∑ 

t∈ T d 

∑ 

p∈ K rs t 

f ts pt = 0 , f ts pt ≥ 0 , ∀ rs ∈ RS, p ∈ K rs t , t ∈ T d (24)

v rs pt ≥ 0 , ∀ rs ∈ RS, p ∈ K rs t , t ∈ T d (25)

Eq. (22) means 0 is one of the subgradients of the Lagrangian in terms of time-dependent path flow. Suppose we find f rs pt > 0

and f rs 
p ′ t ′ = 0 . Since f rs 

p ′ t ′ = 0 , we have PMC rs p ′ t ′ (f ) 
+ = PMC rs p ′ t ′ (f ) 

− = μrs + v rs 
p ′ t ′ where v rs 

p ′ t ′ ≥ 0 . v rs pt = 0 due to f rs pt > 0 . Hence,

0 ∈ [ PMC rs pt (f ) 
− − μrs , PMC rs pt (f ) 

+ − μrs ] , or namely PMC rs pt (f ) 
− ≤ μrs ≤ μrs + v rs 

p ′ t ′ = PMC rs p ′ t ′ (f ) 
+ , which gives the same result

as Proposition 1 . 
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When the TC is differentiable in terms of time-dependent path flow, Eq. (22) becomes 0 = 
∂T C(f ) 
∂ f rs pt 

− μrs − v rs pt and in

this case μrs is equivalent to the minimum path marginal cost of the O-D pair rs . When TC is not differentiable, let

P 
+ 
rs denote the set of time-dependent paths connecting r and s that have positive flows at SO. We will have μrs ∈

[ max p∈ P + rs { PMC rs pt (f ) 
−} , min p∈ P + rs { PMC rs pt (f ) 

+ } ] . 
The SO-DTA problem is equivalent to a VI problem, i.e. find f ∗ ∈ � defined by Eqs. (2b) and (2c) such that ∑ 

rs ∈ RS 

∑ 

t∈ T d 

∑ 

p∈ K rs t 

( PMC rs pt (f 
∗) + I f rs pt > f rs ∗pt 

+ PMC rs pt (f 
∗) −I f rs pt < f rs ∗pt 

)( f rs pt − f rs ∗pt ) ≥ 0 , ∀ f ∈ � (26) 

where I ( ·) is the indicator function that equals to 1 where the condition check in the subscript is true otherwise 0. 

Proposition 2. VI problem (26) solves the M1 model defined by Eq. (2). 

Proof. Let φ(ζ ) = T C(f ∗ + ζ (f − f ∗)) , f ∈ � and ζ ∈ [0, 1]. Note that for any value of ζ we have f ∗ + ζ (f − f ∗) ∈ � according

to the linearity of the constraints defined by Eqs. (2b) and (2c) . f ∗ minimizes the TC, and thus φ( ζ ) achieves minimum at

ζ = 0 . Hence we must have 

∂φ(0) 

∂ζ

+ 
= 

∑ 

rs ∈ RS 

∑ 

t∈ T d 

∑ 

p∈ K rs t 

( PMC rs pt (f 
∗) + I f rs pt > f rs ∗pt 

+ PMC rs pt (f 
∗) −I f rs pt < f rs ∗pt 

)( f rs pt − f rs ∗pt ) ≥ 0 

�

Based on Proposition 1 two useful corollaries are listed as below: 

Corollary 1. For any two time-dependent paths pt and p ′ t ′ connecting the same O-D pair, moving vehicles from pt to p ′ t ′ can
reduce the total cost if and only if 

PMC rs pt (f ) 
− > PMC rs p ′ t ′ (f ) 

+ (27) 

Corollary 2. For any two time-dependent paths pt and p ′ t ′ connecting the same O-D pair, if the flow on both paths are positive

at SO, then we have 

min ( PMC rs pt (f ) 
+ , PMC rs p ′ t ′ (f ) 

+ ) ≥ max ( PMC rs pt (f ) 
−, PMC rs p ′ t ′ (f ) 

−) (28)

Similar to the VI formulation of in Shen (2009) which assumed the total cost is always differentiable, the existence and

uniqueness of VI problem 26 requires the mapping between the network flow and the resultant path marginal cost (called

the dynamic marginal cost mapping in Shen, 2009 ) satisfies some specific mathematical conditions such as continuity and

monotonicity. However, this mapping is related to many factors, including the embedded traffic dynamics models, network

topologies, and demand patterns. Therefore the properties of the dynamic marginal cost mapping are difficult to analyze

and it may not satisfy the required conditions in general. Since the solution existence and uniqueness is not guaranteed, we

turn to solve the problem using heuristics to be discussed in detail in Section 6 . 

In next section two demonstrative examples will be solved analytically to provide insights on PMC when the SO is

achieved. 

5. Deriving the SO using subderivative-based PMC 

5.1. Analytical SO solution for the M2 model 

Consider a network with a single O-D pair and two alternative paths as in Fig. 4 a. Path 1 has a bottleneck with capacity

c and path 2 has no bottleneck. The free flow travel time for path 1 and path 2 are τ 1 and τ 2 respectively. τ 1 < τ 2 . A

pre-determined time-dependent flow rate shown in Fig. 4 a enters the network. 

According to Corollary 2 , if the two paths are used at the same time under SO, then we must have path 1 accommodating

the flow rate of its exact maximum flow rate c , i.e., f 1 ,t = c and f 2 ,t = q t − c. Since the demand rate is smaller than c after a

time point, the queue on path 1 will finally dissipate, say at t 3 . Because PMC 2 ,t = τ2 , ∀ t, path 2 would not be used after t 2 ,

when we have PMC + 1 ,t 2 
= PMC 2 ,t 2 = τ2 . Given these conditions together with demand constraint, we can solve t 2 and t 3 by,

t 3 + τ1 − t 2 = τ2 (29) 

∫ t 3 
t 2 

q t dt = (t 3 − t 2 ) c (30) 

The cumulative curves of the two paths under SO are shown in Fig. 4 d and e and the PMCs of the two paths under SO

are shown in Fig. 4 c. Only during the time period [ t 1 , t 2 ] we have PMC −1 ,t < PMC 2 ,t < PMC + 1 ,t , the only time period where

both paths are used, consistent with the necessary conditions Eq. (20) . In addition, the SO flow pattern is consistent with

Munoz and Laval (2006) . 



P. Zhang and S. Qian / Transportation Research Part B 134 (2020) 41–63 51 

Fig. 4. An example for M2 model: (a) The network; (b) The time-dependent demand; (c) The PMC of the two paths under SO; (d) The cumulative curve 

of path 1 under SO; (e) The cumulative curve of path 2 under SO. 
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Fig. 5. An example for M1 model: (a) The network; (b) The cumulative curves under SO; (c) The PMC under SO. 

 

 

 

 

 

 

 

 

 

5.2. Analytical SO solution for the M1 model 

Now consider a network with two alternative paths but both paths have a bottleneck as in Fig. 5 a. The capacities of the

two bottlenecks are c 1 and c 2 and the free flow travel time are τ 1 and τ 2 . In all Q travelers travels from the origin to the

destination. They can choose their departure times and routes. All travelers have an identical desired arrival time t ∗ (namely

�rs = 0 ). For simplicity we assume α = 1 . 

From Corollary 2 , for any time t 1 that path 1 is used and any time t 2 that path 2 is used, we must have f 1 ,t 1 = c 1 , f 2 ,t 2 =
c 2 . Hence, the cumulative curves on both paths 1 and 2 are straight lines with its maximum capacity flow rates, shown in

Fig. 5 b. The corresponding PMC is shown in Fig. 5 c. Let t 1 a ( t 
2 
a ) and t 

1 
b 
( t 2 
b 
) denote the starting and ending times that path 1

(2) is used under SO. For any path, PMC t b = PMC −t a . Otherwise there must exist a time period [ t a − �t, t a ) where a marginal

vehicle at t b can shift to a time within this time period, which further reduces the TC. Or a marginal vehicle at t a can shift

to t b to reduce the TC. PMC 
1 ,t 1 

= PMC 
2 ,t 2 

must also hold, because otherwise the flow on the path with a greater PMC can

b b 
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shift to the other to reduce the TC. Together with the constraint of total demand, SO can be solved by, 

τ1 + β(t ∗ − τ1 − t 1 a ) = τ1 + γ (t 1 b + τ1 − t ∗) (31)

τ2 + β(t ∗ − τ2 − t 1 a ) = τ2 + γ (t 1 b + τ2 − t ∗) (32)

τ1 + β(t ∗ − τ1 − t 1 a ) = τ2 + β(t ∗ − τ2 − t 1 a ) (33)

(t 1 b − t 1 a ) c 1 + (t 2 b − t 2 a ) c 2 = Q (34)

It can be verified that the PMCs depicted in Fig. 5 c satisfy Eq. (20) . 

5.3. Discussions 

It is no surprise that the TC becomes not differentiable under SO at some time and along some paths. In a general net-

work, some road segments become bottlenecks when the demand is high. One would naturally think of maximizing the flow

throughput for those bottlenecks by, if all possible, controlling the entering flow rate being exactly the bottleneck discharg-

ing rate without creating a queue (namely no waste of waiting time nor flow capacity). This is exactly when flow equals to

the link capacity flow rate (sometimes the downstream bottleneck’s capacity rate) and the TC becomes indifferentiable with

respect to those paths and times. 

Traditionally, we solve the path-based SO-DTA with the assumption that PMC is differentiable, and in fact that “PMC”

refers to the upper limit of PMC in this paper. Since PMC + ∈ PMC , technically, using only the upper limit of PMC to solve for

the VI problem would also work. However, this method suffers from numerical issues, as we will show later in experiments.

It is challenging to obtain true SO solutions for flows, even for a toy network. We would use a subgradient based approach

to make use of both the upper and lower limits of PMC to solve the SO-DTA problem more effectively and efficiently. 

6. A heuristic solution algorithm for path-based SO-DTA 

The path-based SO-DTA problem can be cast into the VI problem 26 . Any standard solution algorithms can be used to

solve the VI problem ( Harker and Pang, 1990 ). Here we propose a heuristic algorithm that specifically considers subgradients

of the PMC since TC can be not differentiable. 

First, we summarize the method of successive averages (MSA) algorithm in Algorithm 1 that was used by

Shen et al. (2007b) . 

Algorithm 1: A typical MSA (TMSA) algorithm (Parentheses in Step 2 and Step 3 are for SO-DTA without departure 

time choices). 

Initialization; any f 0 ∈ �; ν = 0 ; λ0 ; repeat 
1. Load f ν into the network; 

2. For all rs ∈ RS (all rs ∈ RS given any t ∈ T d ), find the time-dependent path [ p ∗, t ∗] ( [ p ∗, t] ) with least PMC; 

3. Generate an auxiliary path flow pattern g (f ν ) by assigning all demands of Q 
rs ( q rs t ) onto [ p 

∗, t ∗] ( [ p ∗, t] ); 
4. Update f ν+1 = (1 − λν ) f + λνg (f ν ) ; 

5. Update λν to λν+1 , ν = ν + 1 

until Convergence criteria meets ; 

The step size λ in Algorithm 1 can be customized. In this paper, we use the diminishing step size as follows: 

λν = 

1 

ν + 1 
(35)

The convergence criteria for Algorithm 1 is defined as either the value of gap function is smaller than a small positive

value ε or the number of iterations reaches a pre-determined number N , whichever comes first. The gap function is defined

as ∑ 

t 

∑ 

rs 

∑ 

p f 
rs 
pt ( PMC rs pt (f ) − μrs (t)) ∑ 

t 

∑ 

rs 

∑ 

p f 
rs 
pt μ

rs (t) 
(36)

This gap function is defined assuming that the path marginal cost is single-valued. μrs ( t ) is the minimum path marginal

cost of all paths between O-D pair rs at time t . Note that Eq. (36) is for the case without departure time choices. With

departure time choice PMC rs pt and μ
rs ( t ) should be replaced with PMC rs p and μ

rs . 

In the Step 2 of Algorithm 1 when searching for the minimal cost time-dependent path, the algorithm implicitly assumes

that the PMC is single-valued. However this is not generally the case under SO. The core to designing a good heuristic is

how to find a descent direction with a step size when the TC becomes not differentiable. 

We start by introducing a new way of forming a path set. 
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Definition 1 (Path Set of Minimal PMC (PSMP)) . For an O-D pair rs ∈ RS (and a time t ∈ T d ), the path set of minimal PMC

is the set of time-dependent paths [ p, t] ∈ P rs 
min 

( p ∈ P rs 
t, min 

) such that: 

(1) for any time-dependent path [ p ′ , t ′ ] ( p ′ ) of the same O-D pair (the same O-D pair at the same time t ) that are not in

the path set of minimal PMC and with a positive flow f rs 
p ′ t ′ > 0 ( f rs 

p ′ t > 0 ), we always have 

PMC rs p ′ t ′ (f ) 
− > PMC rs pt (f ) 

+ (37) 

for M1 model and 

PMC rs p ′ t (f ) 
− > PMC rs pt (f ) 

+ (38) 

for M2 model. 

(2) for any time-dependent path [ p ′ , t ′ ] ( p ′ ) of the same O-D pair (the same O-D pair at the same time t ) that are not in

the path set of minimal PMC and with a zero flow f rs 
p ′ t ′ = 0 ( f rs 

p ′ t = 0 ), we always have 

PMC rs p ′ t ′ (f ) 
+ > PMC rs pt (f ) 

− (39) 

for M1 model and 

PMC rs p ′ t (f ) 
+ > PMC rs pt (f ) 

− (40) 

for M2 model. 

(3) for two time-dependent paths [ p, t ] and [ p ′′ , t ′′ ] ( p and p ′′ ) both in the path set of minimal PMC, we always have 

min ( PMC rs p ′′ t ′′ (f ) 
+ , PMC rs pt (f ) 

+ ) ≥ max ( PMC rs p ′′ t ′′ (f ) 
−, PMC rs pt (f ) 

−) (41)

for M1 model and 

min ( PMC rs p ′′ t (f ) 
+ , PMC rs pt (f ) 

+ ) ≥ max ( PMC rs p ′′ t (f ) 
−, PMC rs pt (f ) 

−) (42)

for M2 model. 

This definition simply states that moving a small tiny fraction of flows within PSMP, or from a path in PSMP to any path

outside PSMP, would increase the TC. On the other hand, moving a small fraction of flows from a path outside of PSMP

to any path in the PSMP can reduce the TC. If the PSMP is found, we can generate the auxiliary path flow pattern to be

assigned to only those paths in the PSMP. 

It should be pointed out that finding PSMP is not trivial even when the network is not so large, because the number of

time-dependent paths for a single O-D pair can be very large. In practice we can initialize PSMP with a shortest path. Next,

in each iteration, we find the time-dependent path with the minimum upper limit PMC for each O-D pair, and examine this

(possibly) new path and all existing paths with positive path flow, which altogether are added to the PSMP. 

The first proposed algorithm is summarized in Algorithm 2 called PHA1. In the step of generating the auxiliary path flow

Algorithm 2: PSMP-based heuristic algorithm 1 (PHA1) (Parentheses are for SO-DTA without departure time choices). 

Step 2 is based on path enumeration. 

Initialization; any f 0 ∈ �; ν = 0 ; λ0 ; repeat 
1. Load f ν into the network; 

2. For all rs ∈ RS ( rs ∈ RS and t ∈ T d ), find the PSMP P rs 
min 

( P rs 
t, min 

); 

3. Generate an auxiliary path flow pattern g (f ν ) as follows; 

For each OD pair rs , go through each path k, t in P rs 
min 

(each path k in P rs 
t, min 

): 

if Path k, t ( k ) has an active bottleneck, i.e., there exists a link along path k where its exit flow rate is less than or equal 

to its flow capacity then 

Assign flow to path k, t ( k ) that is equal to the flow capacity of the most downstream bottleneck, or f rs 
kt 
, 

whichever is greater. 
For all paths in the PSMP that do not have an active bottleneck, assign the remainder flow proportional to the 

minimum flow capacity of the all links on each of those paths. 

4. Update f ν+1 = (1 − λν ) f + λνg (f ν ) ; 

5. Update λν to λν+1 , ν = ν + 1 

until Convergence criteria meets ; 

pattern, the fact that the upper PMC does not equal to lower PMC only if the flow equals to the capacity is considered. PHA1

allows some paths to have constant free-flow travel time at its full capacity, which shows good performance in experiments

later. 

We also propose a second algorithm PHA2 to improve PHA1 in Algorithm 3 . PHA1 could result in assigning excessive

demand onto one path that has the minimal upper limite PMC. Because PMC is a subderivative that works only locally,

going too farther along the PMC (namely a long step size) at a particular demand pattern could lead to increase in TC. Thus,



P. Zhang and S. Qian / Transportation Research Part B 134 (2020) 41–63 55 

Algorithm 3: PSMP-based heuristic algorithm 2 (PHA2) (Parentheses are for SO-DTA without departure time choices). 

Step 2 is based on path enumeration. 

Initialization; any f 0 ∈ �; ν = 0 ; λ0 ; repeat 
1. Load f ν into the network; 

2. For all rs ∈ RS ( rs ∈ RS and t ∈ T d ), find the PSMP P rs 
min 

( P rs 
t, min 

); 

3. Generate an auxiliary path flow pattern g (f ν ) as follows; 

For each OD pair rs , go through each path k, t in P rs 
min 

(each path k in P rs 
t, min 

): 

if Path k, t ( k ) has an active bottleneck, i.e., there exists a link along path k where its exit flow rate is less than or equal 

to its flow capacity then 

Assign flow to path k, t ( k ) that is equal to the flow capacity of the most downstream capacity, if PMC rs 
kt 

is not 

differentiable; 

Otherwise, Assign flow f rs 
kt 

to path k, t ( k ). 

For all paths in the PSMP that do not have an active bottleneck and all paths outside the PSMP, in the ascent order 

of upper limit PMC, assign the flow to path k, t ( k ) that is equal to the minimum flow capacity of all the links on 

path k . Continue this flow assignment til q rs ( q rs t ) is exhausted. 

4. Update f ν+1 = (1 − λν ) f + λνg (f ν ) ; 

5. Update λν to λν+1 , ν = ν + 1 

until Convergence criteria meets ; 

 

 

 

 

 

 

 

 

 

 

 

in PHA2, the change in flow on a single path is limited from iteration to iteration. The auxiliary flow will be assigned onto

the path with the first minimal PMC up to a limit, then onto the path with the second minimal PMC up to a limit, and so

on. 

Both PHA1 and PHA2 rely on the computation of PSMP. For small networks, we can generate the path set for every O-D

pair through path enumeration, following by comparing the PMC of those paths in the set. However this approach is not

practical in large networks as the number of paths can be extremely large. On the other hand, although thousands of paths

may exist, only a small portion of them may be potentially used under system optimum. Therefore we use some heuristics

to identify paths that are likely in PSMP, and then form the PSMP among those selected paths only. The concept of column

generation can be useful here. It was proposed for large linear programming problems. We propose a modified version of

PHA1 which we call it PHACG (PSMP-based Heuristic Algorithm with Column Generation) in Algorithm 4 . 

Algorithm 4: PSMP-based Heuristic Algorithm with Column Generation 1 (Parentheses in Step 2 are for SO-DTA without 

departure time choices). 

Initialization: any f 0 ∈ �; ν = 0 ; λ0 ;For all rs ∈ RS, find the set of n static shortest paths using the free-flow travel 

time as the weight ( n is a small integer). Save this path set as P T rs (P T rs t ). repeat 
1. Load f ν into the network; 

2. For all rs ∈ RS ( rs ∈ RS and t ∈ T d ), find the PSMP P rs 
min 

( P rs 
t, min 

) from P T rs ( P T rs t ) ; 

3. Generate an auxiliary path flow pattern g (f ν ) as follows; 

For each OD pair rs , go through each path k, t in P rs 
min 

(each path k in P rs 
t, min 

): 

if Path k, t ( k ) has an active bottleneck, i.e., there exists a link along path k where its exit flow rate is less than or equal 

to its flow capacity then 

Assign flow to path k, t ( k ) that is equal to the flow capacity of the most downstream bottleneck, or f rs 
kt 
, 

whichever is greater. 
For all paths in the PSMP that do not have an active bottleneck, assign the remainder flow proportional to the 

minimum flow capacity of the all links on each of those paths. 

4. Update f ν+1 = (1 − λν ) f + λνg (f ν ) ; 

5. Update λν to λν+1 , ν = ν + 1 

6. Delete paths in P T rs (P T rs t ) which have no flow. 

7. For all rs ∈ RS ( rs ∈ RS and t ∈ T d ), find the path with the minimal upper PMC using time-dependent shortest 

path algorithm, and add this path to P T rs (P T rs t ) 

until Convergence criteria meets ; 

The convergence criteria for Algorithms 2 –4 is slightly different from Algorithm 2 . Note that the definition of gap function

in Eq. (36) assumed that PMC is single-valued. Hence it is not applicable for PHA1 and PHA2. Thus we define a modified

version of gap function as below 

∑ 

t 

∑ 

rs 

∑ 

p f 
rs 
pt (−min { PMC rs pt (f ) 

− − μrs (t) ′ , 0 , μrs (t) ′ − PMC rs pt (f ) 
+ } ) ∑ 

t 

∑ 

rs 

∑ 

p f 
rs 
pt μ

rs (t) ′ (43)
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where μrs ( t ) ′ is defined as max 
p∈ P t+ rs 

{ PMC rs pt (f ) 
−} . In other words, μrs ( t ) ′ is a feasible value of μrs ( t ) in Eq. (22) . When first

order necessary conditions shown in Section 4 were met, the value of Eq. (43) will be 0. Hence this new version of gap

function can be used as a convergence indicator when PMC is not single-valued. Like Algorithm 1 , the convergence criteria

for Algorithm 2 –4 is either the value of Eq. (43) is smaller than a small positive value ε or the number of iterations achieves

a pre-determined large positive integer N , whichever comes first. 

Last but not least, the subgradient method is not a strictly descending algorithm even in the convex case. Since the

subgradient is used in our heuristic algorithms, we will save the solution that gives the minimal TC over all iterations as

the “optimal” solution. In next section the performance of those algorithms will be examined and presented. 

7. Numerical experiments 

In this section the two examples that have been solved analytically in Section 5 will be first used to examine the perfor-

mance of proposed subgradient based algorithms. This is followed by solving SO numerically in a small synthesized network

and a sizable real-world network. 

7.1. SO-DTA Numerical Example 1: M2 Model 

The network is the same as in Fig. 4 a. The capacity of the bottleneck on path 1 is set to 5400 veh/h. The free flow travel

time for the two paths are τ1 = 15 min and τ2 = 30 min respectively. One hour is divided into 600 simulation intervals.

Set the maximal number of iteration to be 50 0 0 and ε = 0 . 001 . We consider a time-dependent demand pattern that has

a single peak in the middle of the assignment assignment horizon. The demand pattern is shown in Fig. 6 a as well as the
Fig. 6. Numerical example 1: (a) the analytic SO; (b) the TC vs iteration; (c) The resulting flow pattern on path 1; (d) The resulting flow pattern on 

path 2. 
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Table 1 

Summary of numerical experiments. 

Algorithms UTMSA LTMSA PHA1 PHA2 SO 

Minimum TC achieved (hr) 4,005.3 4,005.4 3,996.7 – 3,996.1 

M2 model TC Error (%) 0.23 0.23 0 – –

RMSE of path flow 1 (veh/interval) 0.44 0.46 0.03 – –

RMSE of path flow 2 (veh/interval) 0.44 0.47 0.03 – –

Minimum TC achieved (million $) 3.77 3.75 3.75 3.72 3.72 

M1 model TC Error (%) 1.42 0.74 0.77 0 –

RMSE of path flow 1 (veh/interval) 2.78 2.89 0.65 0.33 –

RMSE of path flow 2 (veh/interval) 1.89 1.79 1.92 0.22 –

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

system optimal flow pattern solved using the method in Section 5.1 . In this case, we assume congestion on path 1 does not

spillover to the origin. Therefore, the results would be the same with LWR or with the point queue model. Three algorithms

are compared: TMSA that always uses the upper limit of PMC (UTMSA for short), TMSA that always using the lower limit of

PMC (LTMSA for short) and PHA1. 

The results are reported in Fig. 6 and Table 1 . We can see that the TC in UTMSA and LTMSA converge almost to the same

value. LTMSA converged slightly faster than UTMSA but the convergence curve is more unstable in the first 10 0 0 iterations.

The minimal TC achieved by PHA1 is far closer to the real value than the other two MSA-based algorithms. 

PHA1 stopped at about the 10 0 0th iteration while the other two did not stop until reaching the maximal number of

iterations. Based on our analysis before, if we only know either the upper limit or lower limit of PMCs at the flow pattern

when the total cost is not differentiable, then the solution may be trapped where the shifting flow among several paths

would be derived as a result of treating PMC differentiable, but this does not truly reduces the TC. However, if we examine

both lower and upper limits of PMCs, the subgradient based algorithm almost ensures TC reduction. This explains why PHA1

could stop earlier. Figs. 6 c, and 7 show the resulting flow patterns on the two paths. We see that the MSA based algorithms,

though reaching a reasonable minimum TC, do not lead to the correct SO flow solutions, whereas PHA1 does. 

7.2. SO-DTA Numerical Example 2: M1 Model 

Now we turn to numerically solve the example in Section 5.2 . We assume c 1 = 5400 veh/h, c 2 = 3600 veh/h, τ1 = 15 min

and τ2 = 30 min. One hour is divided into 600 simulation intervals. Assume a identical desired arrival time t ∗ = 10 0 0 th

interval and β = $0 . 5 /interval < α = $1 /interval < γ = $2 / interval. Set the maximal number of iteration to be 50 0 0 and

ε = 0 . 001 . Using the method presented in Section 5.2 we can solve the SO analytically as shown in Fig. 7 a. Four algorithms

are compared: PHA1, PHA2, UTMSA, LTMSA. 

The convergence curves are shown in Fig. 7 b. PHA2 almost converges instantly and PHA1 converges mildly faster than

the other two MSA based algorithms. The minimum TC that is ever achieved for each algorithm is reported in Table 1 . We

can find that the TC still goes up and down even after thousands of iterations under UTMSA and LTMSA. The resulting flow

patterns are shown in Figs. 7 c and d. Again, both UTMSA and LTMSA cannot achieve the correct SO flow solutions (There

results are similar to each other, so we only plot one of them). The PHA2 gave the best result in terms of both minimum TC

and SO flow patterns. The variability of the flow pattern on path 1 using PHA1 is less than the other two MSA algorithms,

mainly because the PHA1 can split the flow to other paths when the TC is not differentiable (which cannot be done through

MSA). The performance of PHA1 in the M1 model is worse than in the M2 model. This is potentially because in the M2

model with 2 alternative paths, clearly the size of PSMP cannot exceed 2, so PHA1’s performance is fully explored. Whereas

in the M1 model with departure time choice, the size of PSMP can be very large so PHA1 can only explore a very limited

set of spatio-temporal paths within PSMP. In this case, PHA2 can help explore other possible paths comparing to PHA1. In

general our proposed algorithms outperforms traditional MSA methods. 

7.3. SO-DTA Numerical Example 3: many-to-many O-D demands in a small network 

We use a small synthetic corridor network which was firstly used by Nie (2006) . The network consists of 18 links and 16

nodes as shown in Fig. 8 . Nodes 11, 12 and 13 are origin nodes and nodes 14, 15, 16 are destination nodes. The properties,

including length, free-flow speed and holding capacity are shown in Table 2 . Link 10 to link 15 are O-D connectors. The net-

work attempts to abstract a commuting network. Nodes 11, 12, 13 are residential areas and nodes 14, 15, 16 are workplaces.

There is a freeway consisting of links 1, 3, 5, 7 and 9. These links have larger free flow speed. Link 7 has a smaller capacity

than downstream links and thus can be treated as the main bottleneck on the freeway. Links 16, 17, 18 are arterial roads

with lower free-flow speed than highway roads. Links 2, 4, 6 and 8 are short links representing ramps. 

We consider many-to-many OD pairs, and each OD pair has a typical one-peak demand pattern. No departure time choice

is considered in this experiment, and thus PHA1 and PHA2 yield similar solutions. The change in TC over the iterations using

either the sub-gradient based algorithm (PHA1) or UTMSA are shown in Fig. 9 a. 

At the beginning of iterations, the two algorithms found identical descent directions as the TC is differential when solu-

tions are far from being SO. The two algorithms start to differ in 3rd iteration in which case the objective function becomes
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Fig. 7. Numerical example 2: (a) the analytic SO; (b) the TC vs iteration; (c) The resulting flow pattern on path 1 ; (d)The resulting flow pattern on path 2. 

Fig. 8. The synthetic corridor network from Nie (2006) . 

 

 

 

 

 

 

 

 

 

 

not differentiable on some time-dependent paths. MSA moves excessive flow to an uncongested path, which could lead to

a drastic increase in TC, while the PHA1 ensures a better allocation of flows towards SO. The resultant TC that the PHA

converges to is smaller than that of MSA . For PHA , the converged value was almost achieved in the 8th iteration. 

Fig. 9 b to d shows the resultant flow of representative links 1, 8 and 18, respectively. Since departure time choice was not

considered in this experiment, the resultant flows of the two algorithms on link 1 are close (though they can differ slightly

due to queue spillover from link 1 to link 10). Links 8 and 18 are the last link of two alternative routes feeding to the

destination node 15. The total number of vehicles entering the two links all together should be the same. However, the flow

will distribute differently between the two routes. In the first hundreds of time intervals, the resultant flows of MSA and

PHA are very close. The flows of two algorithms starts to differ after the 600th interval on link 8 and the 1500th interval

on link 18. The flow solution of PHA exhibits less fluctuation over time, which is more reasonable than MSA. For instance,

the flow of PHA on link 8 reaches its flow capacity between the 800th and 1300th interval, approximately exhausting the
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Table 2 

Link properties. 

ID Length(mile) Free-flow speed (mph) Holding Capacity (vpm) 

1 1 50 540 

2 0.5 50 180 

3 2 50 540 

4 0.5 50 180 

5 2 50 540 

6 0.5 50 180 

7 1 50 360 

8 0.5 50 180 

9 1 50 540 

16 2 30 180 

17 2 30 180 

18 1 30 180 

Fig. 9. Numerical example 3. 

 

 

 

 

 

 

 

 

 

bottleneck capacity, whereas during the same time, the flow solution of MSA on link 8 is far less than its capacity flow. It

has a drastic drop near the 1200th interval, and the flow keeps up and down afterwards, which conflicts with the intuition

that this bottleneck link should be fully utilized under SO, provided that our demand has an inverted triangular shape.

Similarly flow solutions of PHA on link 18 read more reasonable than MSA solutions. 

In general, we conclude that the SO solution of PHA not only provides a lower total cost, but also finds more accurate

path/link flow solutions. In practice, the minimum possible total system cost is a benchmark but can be extremely challeng-

ing to measure. On the other hand, the optimal link/path flow can have more direct policy and operation implications. We

may be able to measure link/path flow and compare them with the optimal (or desired) flow to assess the effectiveness of

policies or operation. Having oscillating flow solutions, such as provided by the MSA solution, may not be helpful, nor they

are practically realistic. PHA may be able to alleviate this and yield more stabilized flow solutions. This was overlooked in

the previous SO-DTA literature. 
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To further validate our model, we also compared our solution with the solution found through a mathematical program-

ming approach with the link-based formulation ( Zhu and Ukkusuri, 2013 ). Both models are run under the same network and

demand settings. Zhu and Ukkusuri (2013) proposed “the most generalized version of the non-holding back LP formulation”

(GNHBLP) to handle the SO-DTA problem on a generalized network with multiple OD pairs. It is proved to totally eliminate

the vehicle holding-back issues of link based SO-DTA, but FIFO is not considered in this approach. The link model used in

GNHBLP is CTM which is the same used in this numerical experiment. The resultant total cost solved by GNHBLP is slightly

less than the total travel cost found from the subgradient based SO solutions, shown in Fig. 9 a. Note that the GNHBLP does

not consider FIFO in the model, hence the solution given by it actually could be a lower bound of the SO-DTA problem with

FIFO and no vehicle holding-back. 

7.4. SO-DTA Numerical Example 4: many-to-many O-D demands in a sizable network 

Now we apply the sub-gradient based algorithm to a real-world sizable network to demonstrate its capability in solving

system optimum for general networks. The SR-41 corridor network shown in Fig. 10 is used. It consists of 2065 links, 1441
Fig. 10. The SR 41 network Qian et al. (2012) . 
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Fig. 11. Numerical experiment 4: an SR-41 network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nodes and 100 O-D pairs. The SR-41 network is located in the Fresno, California. There is a major freeway in the network

with two parallel arterial roads and local streets. This network covers about 4 miles East-West and 16 miles North-South.

The time-varying O-D demand was estimated based on field data by Liu et al. (2006) and Zhang et al. (2008) . Hence we

can solve the system optimum given this calibrated dynamic OD demand. Since the time dependent demand is given, the

departure time choice is not considered here. The Algorithm 4 that is designed for large networks is adopted to solve the

SO. Since the problem is non-convex and the network consists of a large number of nodes, links and O-D pairs, it is almost

sure that a heuristic algorithm will end up with a local minimum. Hence we run the experiments 500 times for both our

algorithm and the baseline algorithm, and take the results that gives minimal total cost of each algorithm to compare. 

The convergence over iterations for the two algorithms is shown in Fig. 11 a. Since we start with a naive assignment for

both algorithms - assigning all demand to the one single time-dependent shortest path - the TC declines drastically in the

first 5 iterations. Because both algorithms in the first 5 iterations add the same new path to the path set for each OD pair, it

can be seen that their performance is very close. The TC resulting from the PHA algorithm keeps declining after 5 iterantions

until it finds a minimal value around the 15th iteration. However, MSA stops declining after 10 iterations and stays up and

down afterwards. Overall the PHA yields 3% less TC than the MSA after 50 iterations. In other words, the sub-gradient based

algorithm can find better descendent directions than the gradient based algorithm in this case. 

We found that the link flow solutions can vary substantially on many links for the two algorithms. We choose several of

those representative links (on highway or main surface streets) in Fig. 11 b, c and –d. Since the resultant flow patterns can

be very jumpy over time (possibly due to the algorithms), we apply a moving average smoother just for clear display. The

MSA algorithm assigns more flow on link 89 than PHA, whereas less flow on link 489 than PHA. Link 89 is a local street

while link 489 is a highway link with a higher capacity. In other words, PHA leads to a better utilization of the freeway link

close to its flow capacity. This may contribute to the lower TC resulting from the PHA algorithm. Link 136 is again a surface

street with no freeway alternative hence it was heavily used as well. Near the end of the simulation, the solution of PHA

gradually decreases from 2 veh/sec (the flow capacity of the link) to 0. However, a drastic drop near the 700th interval and

then the 800th interval can be found in the MSA solution, each of which is followed by a jump back to flow capacity. This
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would not be reasonable under SO. Similar patterns can be found on some other links under MSA as well. Generally, PHA

yields a lower TC as well as more reasonable path/link SO flow. 

8. Conclusions 

In this paper we study the path-based SO-DTA problem that assigns OD demand over physical paths and time to min-

imize the total system cost (TC). We show that the TC could be non-differentiable with respect to the link/path flow in

some cases, especially when the flow is close or under the SO conditions. This was usually overlooked in previous studies.

We demonstrate when the TC would be indifferentiable and how to compute the subgradients, namely the lower and up-

per limit of path marginal costs. We also examine the relations between the discontinuity of PMC and the SO conditions,

develop PMC-based necessary conditions for SO solutions, and finally design heuristic solution algorithms for solving SO in

general networks with multi-origin-multi-destination OD demands. 

Three heuristic solution algorithms are proposed and tested in four numerical experiments, two toy networks where

we compare analytical solutions with numerical solutions, one small network and one sizable real-world network. We show

that the proposed heuristic algorithms outperform existing ones by using the upper or lower limit of PMCs, in terms of both

the total TC and path/link flow. In toy networks, the results indicate that the proposed PHA1 and PHA2 algorithms can find

the theoretical optimum solutions precisely. In two other networks where the real system optimum is hard to identify, the

results show that our proposed algorithm can find a lower total system cost, as well as more reasonable link flow patterns. 

For large networks the main computational complexity comes from finding the path set of minimal PMC (PSMP) that

would be the key to successful solution algorithms. To accelerate the computation, we proposed a heuristic Algorithm 4 by

applying the column generation and finding the PSMP among a subset of all paths connecting each O-D pair. The results are

promising, indicating a lower TC and more reasonable flow solutions than existing algorithms. However, in large network

there is no guarantee that SO can be achieved by far, since (1) the PSMP is not guaranteed to be the true one; (2) the

proposed heuristic algorithm do not guarantee a descendent direction from iteration to iteration. Our future research plan

is to explore more heuristic algorithms using the sub-gradient information to achieve better SO solutions. 
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